22/7 4069

RunOffGroove 22/7 4069

First build of 2022! This is a 4069 version of RunOffGroove’s 22/7. The original uses the 4049 hex inverter. This the same circuit using the 4069. Both chips contain 6 inverters but the they differ in format and layout. The 4049 is a 16 pin DIP and the 4069 is a 14 pin DIP. One is a drop in replacement for the other.

While it’s possible to make an adapter I decided to make a a new PCB based on the 4049 board I had already made since the board will be more reliable and make a better build than using an adapter. Now days it’s cheap and easy to have boards manufactured. The cost is around $20 for 10 boards is money well spent if you consider the time invested make boards from scratch. I had these boards made at PCBWay.com. They service is pretty cheap and easy to use.

Build your own 22/7

You can order these boards and build your own! Order from the shared service at PCBWay here. Then follow the 22/7 Build Guide.

Does the 4049 sound different from the 4069? Not that I can tell. But discerning ears might detect a subtle difference. I’d like to hear your opinions. The best thing about this project is that it this is a a great sounding circuit and it gives me a place to use this bag of 4069 chips!

22/7 4069

22/7 4069 PCB

Here is a version of RunOffGrooves 22/7 using the 4069. The original circuit uses the 4049 Hex inverter. The 4049 is a 16 pin dip with 6 inverters. Here is the 4049UBE data sheet.

You can see it has 16 pins with 6 inverters. There is a power Vdd pin 1 and ground Vss pin 8. And two unconnected pins 13, and 16.

The 4069 is essentially the same chip. Here is the 4069 data sheet. Here is a picture of the chip:

The 4069 is a 14 pin chip with 6 inverters. Pin 14 is power and pin 7 is ground. There are no unused pins.

The two chips should be the same and interchangeable. Of course we of discerning audio tastes can sometimes hear subtle differences in devices. So of course we have to build both and see what they sound like!

RunOffGroove.com has notes on building an adaptor. You can check out the instructions here.

I had the PCB designed for the 4049 already and PCB manufacture these days is pretty inexpensive. I updated my 4049 design and had some boards made. It cost about $25 for 10 boards. I figure that’s worth the couple hours time it might have taken to make the boards myself, and I get high quality boards! Manufactured boards have two sides, are pre tinned, and have tighter tolerances which allow you to get more in a smaller space. I used PCBWay.com low cost prototyping service to create these.

Big Muff

Here is another Big muff. I had these boards manufactured at PCBWay.com. The idea was to make a Big Muff PCB that could be used to easily build any version of the standard Big Muff.

The board has an on board LED with all of the off board wiring along the bottom edge. This makes the wiring super easy. It keeps the inside of the box neat and tidy.

The PCB uses part numbers from the Big Muff Page. You can pick your schematic there and build using the part values listed.

Here is a version 1 Triangle Big Muff I made. I subbed 2n5089 since the older transistors are hard to get and I’m not a fanatic about reproducing things exactly, it wasn’t really the point.

Morbid Fur

Here is a build of the Morbid Fur fuzz. There were a few errors in my first version of this PCB. All my fault. I had these boards manufactured at PCBWay. com. They do great work and have many options to choose. Like solder mask color. I wrote about their service in more details in a previous post.

This time through everything worked well. This board went together well and fired up the first try!

I followed the off-board wiring scheme used by PedalPCB with all LED mounted to the board, power at the top and the rest of the wiring on the lower edge. All of the wires that go to the switch are on a neat row where the wires can all run parallel to the switch. This arrangement makes wiring a breeze and the layout neat and tidy.

Build your own

You can order boards from PCBWay.com here.

BOM

Part NumberValue
C1 220n
C2470p
C3150n
C4150n
C5470p
C6470n
C7150n
C8470p
C9470n
C10220n
C1147µ
D11n4001
D2LED 3mm Red
D3LED 3mm Red
D41n4742
D51n4742
D6LED
Q1BC337
Q2BC337
Q3BC337
R133K
R282K
R3120r
R4470K
R518K
R61K
R78K2
R856K
R9100r
R10470K
R1110K
R128K2
R1382K
R14120r
R15470K
R1618K
R17RLED ~1K
VOLUMEA100K
GAINA100K

Parts Placement

Wiring

Schematic

Drill Guide

Note! You will need to check the size with your print to make sure it prints to the correct size!

Wiring

A Big Muff without the Tone Stack!

Fuzz Factory #3

Another Fuzz Factory clone. I used silicon transistors for this build I didn’t have any germanium transistors with the right gains. I think lower gain silicon works best here. I used a couple 2N5401 with gains of 115 and 120. These were about the lowest gain I could find in my parts bin.

I ordered three boards from OSH Park for $7.75. These worked well.

https://oshpark.com/shared_projects/xaBILSTV

I used the soft switching with the Madbean Softie. Which worked well. I’ve built four of these so far and they have all worked well.

AionFX Flare an 8 knob Fuzz Factory

I built this a while ago. I recently built a couple more Fuzz Factory clones. I used sockets for the transistors so this made a good place to audition transistors for the new pedals.

It got me thinking about the transistors I used in this pedal. I used germanium transistors in the new pedals but silicon in this one. The transistors here sound different not better or worse but definitely different. There is a lot of overlap in sound.

The germanium transistors fall in a gain range of 70 to 120 hfe. This is pretty low. It’s hard to find silicon transistors this low. I used 2N3906 types. These are pretty common, I had a bag them on hand. I measured the bag and chose the lowest gains I could find.

I used colored knobs with the idea that the color would remind me what each of the knobs did. Violet: Volume, Green: Gain, Chocolate (brown): Comp, Scarlet: Stability. It wasn’t working too well. The Sharpie worked better, with no ambiguity.

I may change these knobs for some with knurled grip. It’s hard to turn these smooth plastic knobs that are packed together so tightly.

the AionFX aboard was way to assemble. It uses 9mm PCB mounted pots for all 8 of the pots. The LED is also mounted to the PCB. This saves time and cuts down on the amount of off board wiring. This is older version of the Flare, they have a newer version which looks to have a few small updates. Definitely use sockets for Q2 and Q3. This will give a chance to experiment with transistors.

What’s it sound like?

Sounds like the Fuzz Factory. Like I said earlier it sounds different from the Germanium box but similar with it’s own character. There is something about the Comp control with the higher gain transistors where it goes very gated zippers fuzz at the very end of it’s range which the germanium doesn’t go if I recall correctly.

Boss Tonebender how about a Buzzbender?

We’ll call this the BZ-1. What got me started on these Boss rehousings was seeing the Boss Tone Bender TB-2w going for 3k on Reverb.com. These were super cool pedals but not worth more than than the list price of $350. I understand the idea of scarcity and knew there were only 3000 made, but I wasn’t going pay even $350 for a fuzz pedal. So I figured I could make one!

The Burns Buzzaround

If you’re curious about the Burns Buzzaround and how it relates to the Tone Bender check out here articles:

Building the BZ-1

There is always a solution when you can make your own! Since it was hard to get a two knob Boss enclosure, I decided to go with a three knob Tonebender variation. There are a couple to choose from. In the end I decided to go with the Madbean Pasty Face which is a clone of the Burns Buzzaround which is variant of the three transistor Tonebender family. I had read some good reviews of the Buzzaround and hadn’t built one before which made it more attractive.

Getting started

I started with a used Boss DS-1 from Reverb.com. Used these seem to go for about $40. I ordered a board from Madbean and I had most of the other parts on hand. The DS-1 comes with a lot of parts that can be reused: switch, LED, jacks, and the enclosure itself. I pulled everything out and except the jacks. I left all of the original wiring in place since I can reuse it.

The LED is mounted to a small PCB along with two wires. These wires were too short to reach the far side of the enclosure where the switching board will be so I replaced them with longer wires.

I built the Pasty Face circuit board first. I left the transistors off since these need some special selection. The build is pretty easy there are only a handful of parts and there is plenty of space to work.

Since I’m putting this into a Boss enclosure the pots will be mounted off board. I cut a piece of strip board to mount the pots to. This was tight fit using 16mm pots but just makes it. Then I soldered some strips of ribbon cable to the this board and then to the main PCB. I made the ribbon cable a generous length since to allow me to pull the PCB out without having to also remove the pots.

Boss uses an electronic switching and the enclosure is nice the way it is. I wanted the switching to work as it was without adding a 3PDT switch. To do this I used a MadBean Softie PCB. This is a relay switching system that works with a Microcontroller. The microcontroller is triggered by the original Boss SPST switch. The relay is a DPDT that handles true bypass switching, while the microcontroller handles the LED.

This system works pretty well and offers a couple advantages. The relay has a failure rate of 100k cycles which beats the 30k cycles of those blue 3PDT switches. Also, if power is lost, the relay switches to bypass. Overall I’d say this relay switching works well and is easy to install. The downside would that the cost is higher than the mechanical switch, and the parts are harder to get, I had to order relays from Mouser.com.

Choosing Transistors

The circuit uses three germanium transistors. With these old circuits there was a lot of variation with some Devices sounding better than others. I found this great thread with some suggestions about the gain and leakage for each of the transistors:

https://www.diystompboxes.com/smfforum/index.php?topic=98022.0

All pedal questions seem to lead to answers at DIYStompboxes.com. Great site and community, I highly recommend you check it out.

I have bag of germanium transistors. I got these from eBay and other sources and have been pulling parts from it for a while. What’s left are parts with less desirable values at this point. Luckily the thread above recommends lower gain devices for Q1 and Q2 and I have plenty of these!

In this circuit the first two transistors are setup in a Darlington pair. You can think of the two together as a single transistor with an hfe that is the product of the two. For example if both transistors had an hfe of 10 the pair in this configuration would act like a transistor an hfe of 100. This also multiplies the leakage of the two transistors. Which can increase noise.

Seems like the best choice here is low leakage, and low hfe/gain. Two transistors with an hfe of 50 would be considered low gain but in this configuration as a pair they would have gain of 2500!

Q3 seems like where all of the distortion/fuzz magic happens. From what I read in the thread above a higher gain, hfe 100+, is better here.

I identified three transistors that I thought would be suitable. I soldered some sockets into the board and auditioned the transistors with the back of the box open.

Everything was sounding pretty fuzzy good, so I removed the sockets and soldered the transistors to the board. I left about an inch of leg since I’d need to bend them over to fit everything into the enclosure with the back on. I wrapped the legs and the transistor body (not shown) in heat shrink tubing to make sure nothing shorted when I closed up the box.

What’s it sound like?

Sounds a lot like all those other 60s fuzz pedals but with its own character. The sound is thick and fuzzy. The tone control has a useful range. The sustain control goes from a muffled to tight buzz. Sort of like fuzzy bumblebee to swarm of wasps.

Boss Tonebender how about a Buzzbender? was originally published on Super-Freq

Boss Tonebender how about a Buzzbender?

We’ll call this the BZ-1. What got me started on these Boss rehousings was seeing the Boss Tone Bender TB-2w going for 3k on Reverb.com. These were super cool pedals but not worth more than than the list price of $350. I understand the idea of scarcity and knew there were only 3000 made, but I wasn’t going pay even $350 for a fuzz pedal. So I figured I could make one!

The Burns Buzzaround

If you’re curious about the Burns Buzzaround and how it relates to the Tone Bender check out here articles:

Building the BZ-1

There is always a solution when you can make your own! Since it was hard to get a two knob Boss enclosure, I decided to go with a three knob Tonebender variation. There are a couple to choose from. In the end I decided to go with the Madbean Pasty Face which is a clone of the Burns Buzzaround which is variant of the three transistor Tonebender family. I had read some good reviews of the Buzzaround and hadn’t built one before which made it more attractive.

Getting started


I started with a used Boss DS-1 from Reverb.com. Used these seem to go for about $40. I ordered a board from Madbean and I had most of the other parts on hand. The DS-1 comes with a lot of parts that can be reused: switch, LED, jacks, and the enclosure itself. I pulled everything out and except the jacks. I left all of the original wiring in place since I can reuse it.


The LED is mounted to a small PCB along with two wires. These wires were too short to reach the far side of the enclosure where the switching board will be so I replaced them with longer wires.

I built the Pasty Face circuit board first. I left the transistors off since these need some special selection. The build is pretty easy there are only a handful of parts and there is plenty of space to work.

Since I’m putting this into a Boss enclosure the pots will be mounted off board. I cut a piece of strip board to mount the pots to. This was tight fit using 16mm pots but just makes it. Then I soldered some strips of ribbon cable to the this board and then to the main PCB. I made the ribbon cable a generous length since to allow me to pull the PCB out without having to also remove the pots.


Boss uses an electronic switching and the enclosure is nice the way it is. I wanted the switching to work as it was without adding a 3PDT switch. To do this I used a MadBean Softie PCB. This is a relay switching system that works with a Microcontroller. The microcontroller is triggered by the original Boss SPST switch. The relay is a DPDT that handles true bypass switching, while the microcontroller handles the LED.

This system works pretty well and offers a couple advantages. The relay has a failure rate of 100k cycles which beats the 30k cycles of those blue 3PDT switches. Also, if power is lost, the relay switches to bypass. Overall I’d say this relay switching works well and is easy to install. The downside would that the cost is higher than the mechanical switch, and the parts are harder to get, I had to order relays from Mouser.com.

Choosing Transistors

The circuit uses three germanium transistors. With these old circuits there was a lot of variation with some Devices sounding better than others. I found this great thread with some suggestions about the gain and leakage for each of the transistors:

https://www.diystompboxes.com/smfforum/index.php?topic=98022.0

All pedal questions seem to lead to answers at DIYStompboxes.com. Great site and community, I highly recommend you check it out.

I have bag of germanium transistors. I got these from eBay and other sources and have been pulling parts from it for a while. What’s left are parts with less desirable values at this point. Luckily the thread above recommends lower gain devices for Q1 and Q2 and I have plenty of these!

In this circuit the first two transistors are setup in a Darlington pair. You can think of the two together as a single transistor with an hfe that is the product of the two. For example if both transistors had an hfe of 10 the pair in this configuration would act like a transistor an hfe of 100. This also multiplies the leakage of the two transistors. Which can increase noise.

Seems like the best choice here is low leakage, and low hfe/gain. Two transistors with an hfe of 50 would be considered low gain but in this configuration as a pair they would have gain of 2500!

Q3 seems like where all of the distortion/fuzz magic happens. From what I read in the thread above a higher gain, hfe 100+, is better here.

I identified three transistors that I thought would be suitable. I soldered some sockets into the board and auditioned the transistors with the back of the box open.

Everything was sounding pretty fuzzy good, so I removed the sockets and soldered the transistors to the board. I left about an inch of leg since I’d need to bend them over to fit everything into the enclosure with the back on. I wrapped the legs and the transistor body (not shown) in heat shrink tubing to make sure nothing shorted when I closed up the box.

What’s it sound like?

Sounds a lot like all those other 60s fuzz pedals but with its own character. The sound is thick and fuzzy. The tone control has a useful range. The sustain control goes from a muffled to tight buzz. Sort of like fuzzy bumblebee to swarm of wasps.

Parentheses Fuzz #5

I think this is #5 I’m losing count. These are so much fun to play the world needs a couple more! I used matte black sand textured enclosure. Which give this a good industrial vibe.

This is a pretty easy build for what you get. The board is a good size and parts are comfortably spaced. All of the pots are mounted to the board making wiring easy. The switches require some work but the pads are well organized.

The only down side is finding FETs and Ge diodes. Luckily D1 and D2 can be replaced by just about any type of type. D7, D8, and D9 could also be any type but Ge will have a noticeable sound to them. Ge diodes here will have a particular sound, not better or worse. If you’re looking for “that” sound you might stick with Ge for these. Otherwise test out any type of diode and use your ears to decide what sounds good here.

The main distortion circuit is based on the LM308 op-amp which are hard to get and can cost $5 or more, that’s a lot for an op-amp. Luckily the part is not critical. You can a few replacements. I used an OP07 which was $0.50 at Tayda.

The PF5102 FETs are hard to get. I used J112 from Tayda successfully.

And, it sounds amazing! This might be for sale check my for sale page.

Parentheses Fuzz #5 was originally published on Super-Freq

Parentheses Fuzz #5

I think this is #5 I’m losing count. These are so much fun to play the world needs a couple more! I used matte black sand textured enclosure. Which give this a good industrial vibe.

This is a pretty easy build for what you get. The board is a good size and parts are comfortably spaced. All of the pots are mounted to the board making wiring easy. The switches require some work but the pads are well organized.

The only down side is finding FETs and Ge diodes. Luckily D1 and D2 can be replaced by just about any type of type. D7, D8, and D9 could also be any type but Ge will have a noticeable sound to them. Ge diodes here will have a particular sound, not better or worse. If you’re looking for “that” sound you might stick with Ge for these. Otherwise test out any type of diode and use your ears to decide what sounds good here.

The main distortion circuit is based on the LM308 op-amp which are hard to get and can cost $5 or more, that’s a lot for an op-amp. Luckily the part is not critical. You can a few replacements. I used an OP07 which was $0.50 at Tayda.

The PF5102 FETs are hard to get. I used J112 from Tayda successfully.

And, it sounds amazing! This might be for sale check my for sale page.

Haunting Mids Reflection

The goal of this project was to build three Haunting Mids, keep one and sell the other two, hopefully coming out ahead!

This post covers the original Haunting Mids Fuzz. Note! This is not the JHS pedal with the same name.

What is Haunting Mids?

Haunting Mids is a Big Muff variant. Besides careful choice of resistors, capacitors, and diodes the biggest change to the circuit is dropping the tone stack and the output buffer. This offers the sound of a Big Muff but with more hair and volume. It’s really loud. You hear the raw distortion from from the two clipping sections unfiltered.

In the original the Sustain control is meant to be an internal trim pot, set and forget. With only the volume control on the outside of the box. I decided to put the sustain control on the outside of the box for convenience.

The original is a must have for people who like single knob boxes!

I found this PCB for Haunting Mids while searching for DIY projects on OSH Park.

https://oshpark.com/shared_projects/JtR27cHU

It’s a well laid out PCB for a 1590A sized box. I ordered three of these and built them successfully. This board works well I would recommend it. The switch is mounted to the board which saves trouble wiring.

A little History

The Haunting Mids Fuzz was developed around 2005 by a group of DIY pedal fans who set up a private forum, which I’m guessing was dedicated to the development of the Haunting Mids circuit. I say “guess” because I was never a member though I had heard of the forum.

Not sure when but the Haunting Mids forum died and went away. Go figure, an anti social site is going to have growth issues. That said there is something pleasant about discussions with a small group of like minded individuals rather than everyone and their friends and family.

It seems that Haunting Mids has gone through a couple iterations. The board linked above is labeled v3. You can search Haunting Mids and you’ll find several versions. To my knowledge all versions are based around the Big Muff sans tone and output buffer.

At some point JHS made a commercial pedal with the same name. I’m not sure why they did this. I suspect it was joke, or some sort dig at the original Haunting Mids group, or they just wanted to get a media boost by piggybacking on the name. I wish they hadn’t done this since it makes researching the circuit more difficult.

What’s it sound like?

Sounds like a big muff! It also has its own character like all of the other Big Muff variants, which the world of pedals is full of. But the two cascaded clipping sections guarantees you get the classic Big Muff character. Without the tone stack you hear the clipping section raw and unfiltered! It like a big muff with all the hair and grit.

This demo compares five different DIY Muff variants. Haunting Mids is in the center.

Here’s is another demo of the Haunting Mids:

Build

I built three of these. The parts were were all easy to find. You can get everything at Tayda. I chose to build mine with two knobs and put the Sustain/Gain control on the outside of the box.

I like having the sustain/gain control but the range is not that usable, or maybe there is some less useful range. With the gain up all the way there is too much gain. On reflection I see the reasoning behind making this control an internal set and forget option. I think I might go this route for future builds!

The PCBs from OSH Park are designed for a 1590A enclosure. I decided to build two in 1590B enclosures because I like these better than the small A sized boxes. I did build one in an A sized box.

Costs

This is a pretty cheap box to build. None of the parts are expensive or hard to find. You can source everything from Tayda and order boards from OSH Park.

Ordering the boards from OSH Park requires that you buy three boards but the cost is $14.85 which is about $5 a board. Making the board the most expensive part unless you get a fancy enclosure. The overall cost was about $25 for all the parts to build a single box.

I built three and managed to sell two on Reverb. I kept the last for myself. They sat on Revered for a month or two but eventually sold for $220 (both) not including tax and shipping. Reverb took their cut which left me: $202.50. I spent roughly $75 to build all three so I cleared $127.50.